PD-95265

International IRF7811AVPbF IOR Rectifier

- N-Channel Application-Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- Low Conduction Losses
- Low Switching Losses
- · Minimizes Parallel MOSFETs for high current applications
- 100% R_G Tested
- Lead-Free

Description

This new device employs advanced HEXFET Power MOSFET technology to achieve an unprecedented balance of on-resistance and gate charge. The reduced conduction and switching losses make it ideal for high efficiency DC-DC converters that power the latest generation of microprocessors.

The IRF7811AV has been optimized for all parameters that are critical in synchronous buck converters including R_{DS(on)}, gate charge and Cdv/dt-induced turn-on immunity. The IRF7811AV offers an extremely low combination of $\mathbf{Q}_{_{\text{SW}}}$ & $\mathbf{R}_{_{\text{DS(on)}}}$ for reduced losses in both control and synchronous FET applications.

The package is designed for vapor phase, infra-red, convection, or wave soldering techniques. Power dissipation of greater than 2W is possible in a typical PCB mount application.

DEVICE CHARACTERISTICS ⑤

	IRF7811AV
R _{DS(on)}	11 mΩ
Q_{G}	17 nC
Q_{SW}	6.7 nC
Q _{OSS}	8.1 nC

Absolute Maximum Ratings

Parameter Drain-to-Source Voltage		Symbol	IRF7811AV	Units		
		V _{DS}	30	V		
Gate-to-Source Voltage		V _{GS}	±20			
Continuous Output Current T _A = 25°C		1	30 V ±20 A 10.8 A 11.8 100 2.5 W			
$(V_{GS} \ge 4.5V)$	$T_L = 90^{\circ}C$	I _D	11.8			
Pulsed Drain Current ①		I _{DM}	100			
Power Dissipation ③	$T_A = 25$ °C	В	2.5	10/		
Fower Dissipation ©	T _L = 90°C	P _D	3.0	VV		
Junction & Storage Temperature Range	ge	T _J , T _{STG}	-55 to 150	°C		
Continuous Source Current (Body Diode)		I _S	2.5			
Pulsed Source Current ①		I _{SM}	50	A		

Thermal Resistance

Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ③⑥	$R_{ heta JA}$		50	°C/W	
Maximum Junction-to-Lead ®	$R_{\theta JL}$		20	C/VV	

IRF7811AVPbF

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	30			V	$V_{GS} = 0V, I_D = 250\mu A$
Static Drain-to-Source On-Resistance	R _{DS(on)}		11	14	mΩ	V _{GS} = 4.5V, I _D = 15A ②
Gate Threshold Voltage	$V_{GS(th)}$	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
				50	μΑ	$V_{DS} = 30V, V_{GS} = 0V$
Drain-to-Source Leakage Current	I_{DSS}			20	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				100	mΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 100^{\circ}C$
Gate-to-Source Leakage Current	I_{GSS}			±100	nΑ	$V_{GS} = \pm 20V$
Total Gate Charge, Control FET	Q_g		17	26	nC	$V_{DS} = 24V, I_D = 15A, V_{GS} = 5.0V$
Total Gate Charge, Synch FET	Q_g		14	21		$V_{GS} = 5.0V, V_{DS} < 100mV$
Pre-Vth Gate-to-Source Charge	Q _{gs1}		3.4			
Post-Vth Gate-to-Source Charge	Q_{gs2}		1.6			V _{DS} = 16V, I _D = 15A
Gate-to-Drain ("Miller") Charge	Q_{gd}		5.1			VDS = 10V, ID = 13A
Switch Charge (Q _{gs2} + Q _{gd})	Q_{SW}		6.7			
Output Charge	Q _{OSS}		8.1	12		$V_{DS} = 16V, V_{GS} = 0$
Gate Resistance	R_G	0.5		4.4	Ω	
Turn-On Delay Time	t _{d(on)}		8.6		ns	$V_{DD} = 16V$
Rise Time	t _r		21	_		I _D = 15A
Turn-Off Delay Time	t _{d(off)}		43	_		$V_{GS} = 5.0V$
Fall Time	t _f		10			Clamped Inductive Load
Input Capacitance	C _{iss}		1801		pF	V _{GS} = 0V
Output Capacitance	Coss		723			V _{DS} = 10V
Reverse Transfer Capacitance	C _{rss}		46			

Diode Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Diode Forward Voltage	V_{SD}			1.3	V	$T_J = 25^{\circ}C, I_S = 15A ② , V_{GS} = 0V$
Reverse Recovery Charge ④	Q _{rr}		50			di/dt = $700A/\mu s$ V _{DD} = $16V$, V _{GS} = $0V$, I _D = $15A$
Reverse Recovery Charge (with Parallel Schottsky) 4	Q _{rr}		43			di/dt = $700A/\mu s$, (with $10BQ040$) $V_{DD} = 16V$, $V_{GS} = 0V$, $I_D = 15A$

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.

- Repetitive rating, pulse width limited by max. junction temperature.
 Pulse width ≤ 400 μs; duty cycle ≤ 2%.
 When mounted on 1 inch square copper board, t < 10 sec.
 Typ = measured Q_{oss}
 Typical values of R_{DS}(on) measured at V_{GS} = 4.5V, Q_G, Q_{SW} and Q_{OSS} measured at V_{GS} =5.0V, I_F = 15A.
 R_θ is measured at T_J approximately 90°C

International TOR Rectifier

IRF7811AVPbF

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Ε	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF7811AVPbF

International IR Rectifier

SO-8 Tape and Reel

- NOTES: 1. CON 2. ALL I CONTROLLING DIMENSION: MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

